Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 618
Filtrar
1.
Theriogenology ; 220: 12-25, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38457855

RESUMO

Although the association of maternal milk production with developmental programming of offspring has been investigated, there is limited information available on the relationship of maternal milk components with productive and reproductive performance of the offspring. Therefore, the present study was conducted to analyze the association of maternal milk fat and protein percentage and milk fat to protein ratio with birth weight, survival, productive and reproductive performance and AMH concentration in the offspring. In study I, data of birth weight, milk yield and reproductive variables of offspring born to lactating dams (n = 14,582) and data associated with average maternal milk fat percentage (MFP), protein percentage (MPP) and fat to protein ratio (MFPR) during 305-day lactation were retrieved. Afterwards, offspring were classified in various categories of MFP, MPP and MFPR. In study II, blood samples (n = 339) were collected from offspring in various categories of MFP, MPP and MFPR for measurement of serum AMH. Maternal milk fat percentage was positively associated with birth weight and average percentage of milk fat (APMF) and protein (APMP) and milk fat to protein ratio (FPR) during the first lactation, but negatively associated with culling rate during nulliparity in the offspring (P < 0.05). Maternal milk protein percentage was positively associated with birth weight, APMF, APMP, FPR and culling rate, but negatively associated with milk yield and fertility in the offspring (P < 0.05). Maternal FPR was positively associated with APMF and FPR, but negatively associated with culling rate, APMP and fertility in the offspring (P < 0.05). However, concentration of AMH in the offspring was not associated with MFP, MPP and MFPR (P > 0.05). In conclusion, the present study revealed that maternal milk fat and protein percentage and their ratio were associated with birth weight, survival, production and reproduction of the offspring. Yet it was a preliminary research and further studies are required to elucidate the mechanisms underlying these associations.


Assuntos
Lactação , Proteínas do Leite , Reprodução , Animais , Bovinos , Feminino , Peso ao Nascer , Leite/química , Leite/metabolismo , Proteínas do Leite/química , Proteínas do Leite/metabolismo , Hormônio Antimülleriano/química , Hormônio Antimülleriano/metabolismo
2.
Free Radic Res ; 58(2): 130-143, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38394084

RESUMO

Pathogenic variants of BRCA1/2 constitute hereditary breast and ovarian cancer (HBOC) syndrome, and BRCA1/2 mutant is a risk for various cancers. Whereas the clinical guideline for HBOC patients has been organized for the therapy and prevention of cancer, there is no recommendation on the female reproductive discipline. Indeed, the role of BRCA1/2 pathogenic variants in ovarian reserve has not been established due to the deficiency of appropriate animal models. Here, we used a rat model of Brca2(p.T1942fs/+) mutant of Sprague-Dawley strain with CRISPR-Cas9 editing to evaluate ovarian reserve in females. Fertility and ovarian follicles were evaluated and anti-Müllerian hormone (AMH) was measured at 8-32 weeks of age with a comparison between the wild-type and the mutant rats (MUT). MUT revealed a significantly smaller number of deliveries with fewer total pups. Furthermore, MUT showed a significant decrease in primordial follicles at 20 weeks and a low AMH level at 28 weeks. RNA-sequencing of the ovary at 10 weeks detected acceleration of the DNA damage repair pathway, which was accompanied by oxidative stress-induced DNA double-strand breaks, a decrease in PTEN, and an increase in mTOR in follicular granulosa cells. In conclusion, Brca2(p.T1942fs/+) dissipates primordial follicles via early activation of granulosa cells through oxidative stress, leading to earlier termination of fertility.


Assuntos
Reserva Ovariana , Humanos , Ratos , Feminino , Animais , Reserva Ovariana/genética , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Proteína BRCA2/genética , Proteína BRCA2/metabolismo , Ratos Sprague-Dawley , Células da Granulosa/metabolismo , Hormônio Antimülleriano/genética , Hormônio Antimülleriano/metabolismo , Estresse Oxidativo
3.
Int J Mol Sci ; 25(3)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38339020

RESUMO

The mechanism of fish gonadal sex differentiation is complex and regulated by multiple factors. It has been widely known that proper steroidogenesis in Leydig cells and sex-related genes in Sertoli cells play important roles in gonadal sex differentiation. In teleosts, the precise interaction of these signals during the sexual fate determination remains elusive, especially their effect on the bi-potential gonad during the critical stage of sexual fate determination. Recently, all-testis phenotypes have been observed in the cyp17a1-deficient zebrafish and common carp, as well as in cyp19a1a-deficient zebrafish. By mating cyp17a1-deficient fish with transgenic zebrafish Tg(piwil1:EGFP-nanos3UTR), germ cells in the gonads were labelled with enhanced green fluorescent protein (EGFP). We classified the cyp17a1-deficient zebrafish and their control siblings into primordial germ cell (PGC)-rich and -less groups according to the fluorescence area of the EGFP labelling. Intriguingly, the EGFP-labelled bi-potential gonads in cyp17a1+/+ fish from the PGC-rich group were significantly larger than those of the cyp17a1-/- fish at 23 days post-fertilization (dpf). Based on the transcriptome analysis, we observed that the cyp17a1-deficient fish of the PGC-rich group displayed a significantly upregulated expression of amh and gsdf compared to that of control fish. Likewise, the upregulated expressions of amh and gsdf were observed in cyp19a1a-deficient fish as examined at 23 dpf. This upregulation of amh and gsdf could be repressed by treatment with an exogenous supplement of estradiol. Moreover, tamoxifen, an effective antagonist of both estrogen receptor α and ß (ERα and Erß), upregulates the expression of amh and gsdf in wild-type (WT) fish. Using the cyp17a1- and cyp19a1a-deficient zebrafish, we provide evidence to show that the upregulated expression of amh and gsdf due to the compromised estrogen signaling probably determines their sexual fate towards testis differentiation. Collectively, our data suggest that estrogen signaling inhibits the expression of amh and gsdf during the critical time of sexual fate determination, which may broaden the scope of sex steroid hormones in regulating gonadal sex differentiation in fish.


Assuntos
Hormônios Peptídicos , Processos de Determinação Sexual , Peixe-Zebra , Animais , Feminino , Masculino , Hormônio Antimülleriano/genética , Hormônio Antimülleriano/metabolismo , Estrogênios/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Gônadas/metabolismo , Ovário/metabolismo , Hormônios Peptídicos/genética , Testículo/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/crescimento & desenvolvimento , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
4.
J Vet Med Sci ; 86(3): 300-307, 2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38267037

RESUMO

We previously showed that the anti-Müllerian hormone (AMH), infiltrating from the testis to the mesonephros reaches the cranial and middle regions of the Müllerian duct (MD) and induces their regression using an organ culture in mice. However, it is difficult to maintain structural integrity, such as the length and diameter and normal direction of elongation of the caudal region of the MD, in conventional organ culture systems. Therefore, the pathway of AMH to the caudal MD region remains uncharted. In this study, we established an organ culture method that can maintain the morphology of the caudal region of the MD. The gonad-mesonephros complex, metanephros, and urinary bladder of mouse fetuses at 12.5 dpc attached to the body trunk were cultured on agarose gels for 72 hr. The cultured caudal region of the mesonephros was elongated along the body trunk, and the course of the mesonephros was maintained in many individuals. In males, mesenchymal cells aggregated around the MD after culture. Moreover, the male MD diameter was significantly smaller than the female. Based on these results, it was concluded that the development of the MD was maintained in the present organ culture system. Using this culture system, AMH infiltration to the caudal region of the MD can be examined without the influence of AMH in the blood. This culture system is useful for clarifying the regression mechanism of the caudal region of the MD.


Assuntos
Hormônio Antimülleriano , Estruturas Embrionárias , Rim/embriologia , Ductos Paramesonéfricos , Camundongos , Masculino , Feminino , Animais , Técnicas de Cultura de Órgãos/veterinária , Hormônio Antimülleriano/metabolismo , Testículo/metabolismo
5.
J Ovarian Res ; 17(1): 14, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38216976

RESUMO

BACKGROUND: For women of childbearing age, the biggest problem caused by polycystic ovary syndrome (PCOS) is infertility, which is mainly caused by anovulation, abnormal follicular development, proliferation of small antral follicles, and cystic follicles. The mechanism underlying its occurrence is not clear. The abnormal proliferation and development of follicles in PCOS patients is a complex process, which is affected by many factors. The objective of this study was to investigate the relationship between the Hippo pathway and follicular development in PCOS, and to further explore this relationship by using the YAP inhibitor verteporfin (VP). METHOD: 30 3-week-old BALB/C female rats were randomly divided into control group (n = 10), DHEA group (n = 10) and DHEA + VP group (n = 10). The morphology of ovary and the degree of follicular development were observed by HE staining, and the expression and location of AMH in ovarian follicles were observed by immunofluorescence. The ovarian reserve function index AMH, cell proliferation index PCNA and the ratio of Hippo pathway related proteins MST, LATS, YAP, P-YAP and P-YAP/YAP were detected by Western blot. RESULTS: After dividing 30 3-week-old female mice into control, dehydroepiandrosterone (DHEA; model of PCOS), and DHEA + VP groups, we found that the number of small follicles increased in the DHEA group compared to the control group. Additionally, in the DHEA group compared to the control group, anti-müllerian hormone (AMH; ovarian reserve index) increased, proliferating cell nuclear antigen (PCNA; cell proliferation index) decreased, and upstream (MST and LATS) and downstream (YAP and p-YAP) proteins in the Hippo pathway increased, though the p-YAP/YAP ratio decreased. VP ameliorated the increases in AMH, MST, LATS, YAP and p-YAP, but did not ameliorate the decrease in the p-YAP/YAP ratio. CONCLUSIONS: This study indicates that the increased small follicles in the ovaries and changes in ovarian reserve and cell proliferation may be closely related to Hippo pathway activation. This suggests that the Hippo pathway may be an important pathway affecting the proliferation and development of follicles and the occurrence of PCOS.


Assuntos
Síndrome do Ovário Policístico , Humanos , Feminino , Ratos , Animais , Camundongos , Síndrome do Ovário Policístico/metabolismo , Antígeno Nuclear de Célula em Proliferação/metabolismo , Via de Sinalização Hippo , Camundongos Endogâmicos BALB C , Hormônio Antimülleriano/metabolismo , Desidroepiandrosterona/farmacologia
6.
Res Vet Sci ; 169: 105158, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38295629

RESUMO

"Exploring AMH Levels, Homeostasis and Primordial Follicle Activation in Pubertal Infected Sheep on a High Protein Diet ". The first activation wave of ovarian primordial follicles is part of the onset of puberty and fertility. Abomasal helminth infection may cause an undesirable delay in puberty manifestation. Helminth-infected animals demand a higher amount of protein in their diet to repair the damage caused by the parasite in sheep's tissues, replenish the blood losses, and build the host's immune response. Helminths become resistant to drug therapy shortly after being exposed to a new treatment. Besides, there is the possibility of contamination by anthelmintic drugs in ovine products, possibly affecting human health and the environment. This study's objective was to evaluate if ovarian and clinical parameters can be improved by supplementing their diet with protein, offering a more sustainable management approach than relying on anthelmintic usage. We used a 2 × 2 factorial model where eighteen ewe lambs (Ovis aries) between 6 and 7 months old - born to the same ram - were fed one of two diet protein levels (12% or 19%). After 35 days on this diet, they were infected or left uninfected with 10,000 Haemonchus contortus L3 larvae. We evaluated Anti-Mullerian Hormone serum levels, blood cells and biochemical parameters at four different time points. Following 42 days of infection and 77 days on the diet, the lambs had their left ovaries removed, and we examined ovarian morphometrics through histological analysis. The groups Supplemented Protein-Infected(n = 5), Control Protein- Infected(n = 5), Supplemented Protein-Not Infected (n = 4) and Control Protein-Not Infected (n = 4) did not differ in their bodyweight gain. In the factorial ANOVA analysis examining the relationship between plasma protein, diet, and infection, the protein level of the diet showed significance (p = 0.02). Primordial follicle size varied with the interaction between diet and infection (p < 0.05), and oocyte size was affected by the level of protein in the diet (p = 0.047). Additionally, to understand how all homeostasis parameters relate to the primordial follicle and oocyte size, we applied an explanatory linear mixed model. In conclusion, serum AMH levels remained stable despite the infection and variations in diet protein levels, indicating its reliability as a marker for ovarian reserve in pubertal sheep. The number of blood cells, biochemical parameters, and primordial follicle activation were affected by both diet and infection.


Assuntos
Anti-Helmínticos , Dieta Rica em Proteínas , Feminino , Animais , Ovinos , Masculino , Humanos , Ovário , Hormônio Antimülleriano/metabolismo , Reprodutibilidade dos Testes , Dieta Rica em Proteínas/veterinária
7.
Gen Comp Endocrinol ; 349: 114454, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38266936

RESUMO

Anti-mullerian hormone (AMH) plays a crucial role in follicle regulation in mammals by preventing premature primordial follicle activation and restricting follicle development through reduction of FSH sensitivity and inhibition of FSH-induced increase of steroidogenic enzymes. AMH is produced by granulosa cells from growing follicles and expression declines at the time of selection in both mammalian and avian species. The role of AMH in chicken granulosa cells remains unclear, as research is complicated because mammalian AMH is not bioactive in chickens and there is a lack of commercially available chicken AMH. In the current experiments, we used RNA interference to study the role of AMH on markers of follicle development in the presence and absence of FSH. Cultured chicken granulosa cells from 3-5 mm follicles and 6-8 mm follicles, the growing pool from which follicle selection is thought to occur, were used. Transfection with an AMH-specific siRNA significantly reduced AMH mRNA expression in granulosa cells from 3-5 mm and 6-8 mm follicles. Genes of interest were only measured in granulosa cells of 3-5 mm follicles due to low expression of AMH mRNA at the 6-8 mm follicle stage. Knockdown of AMH mRNA did not affect markers of follicle development (follicle stimulating hormone receptor, FSHR; steroidogenic acute regulatory protein, STAR; cytochrome P450 family 11 subfamily A member 1, CYP11A1; bone morphogenetic protein receptor type 2, BMPR2) or FSH responsiveness in granulosa cells from 3-5 mm follicles, indicating that AMH does not regulate follicle development directly by affecting markers of steroidogenesis, FSHR or BMPR2 at this follicle stage in chickens.


Assuntos
Hormônio Antimülleriano , Galinhas , Hormônios Peptídicos , Animais , Feminino , Hormônio Antimülleriano/genética , Hormônio Antimülleriano/metabolismo , Galinhas/metabolismo , Hormônio Foliculoestimulante/metabolismo , Células da Granulosa/metabolismo , Mamíferos/metabolismo , Hormônios Peptídicos/metabolismo , RNA Mensageiro/genética
8.
Hum Reprod ; 39(2): 382-392, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38070496

RESUMO

STUDY QUESTION: What are the effects of cyclophosphamide exposure on the human ovary and can anti-Mullerian hormone (AMH) and rapamycin protect against these? SUMMARY ANSWER: Exposure to cyclophosphamide compromises the health of primordial and transitional follicles in the human ovarian cortex and upregulates PI3K signalling, indicating both direct damage and increased follicular activation; AMH attenuates both of these chemotherapy-induced effects, while rapamycin attenuates only PI3K signalling upregulation. WHAT IS KNOWN ALREADY: Studies primarily in rodents demonstrate that cyclophosphamide causes direct damage to primordial follicles or that the primordial follicle pool is depleted primarily through excessive initiation of follicle growth. This increased follicular activation is mediated via upregulated PI3K signalling and/or reduced local levels of AMH production due to lost growing follicles. Furthermore, while rodent data show promise regarding the potential benefits of inhibitors/protectants alongside chemotherapy treatment to preserve female fertility, there is no information about the potential for this in humans. STUDY DESIGN, SIZE, DURATION: Fresh ovarian cortical biopsies were obtained from 17 healthy women aged 21-41 years (mean ± SD: 31.8 ± 4.9 years) at elective caesarean section. Biopsies were cut into small fragments and cultured for 24 h with either vehicle alone (DMSO), the active cyclophosphamide metabolite 4-hydroperoxycyclophosphamide (4-HC) alone, 4-HC + rapamycin or 4-HC+AMH. Two doses of 4-HC were investigated, 0.2 and 2 µM in separate experiments, using biopsies from seven women (aged 27-41) and six women (aged 21-34), respectively. Biopsies from four women (aged 28-38) were used to investigate the effect of rapamycin or AMH only. PARTICIPANTS/MATERIALS, SETTING, METHODS: Histological analysis of ovarian tissue was undertaken for follicle staging and health assessment. Western blotting and immunostaining were used to assess activation of PI3K signalling by measuring phosphorylation of AKT and phosphorylated FOXO3A staining intensity, respectively. MAIN RESULTS AND THE ROLE OF CHANCE: Exposure to either dose of 4-HC caused an increase in the proportion of unhealthy primordial (P < 0.0001, both doses) and transitional follicles (P < 0.01 for low dose and P < 0.01 for high dose) compared to vehicle. AMH significantly reduced follicle damage by approximately half in both of the investigated doses of 4-HC (P < 0.0001), while rapamycin had no protective effect on the health of the follicles. Culture with AMH or rapamycin alone had no effect on follicle health. Activation of PI3K signalling following 4-HC exposure was demonstrated by both Western blotting data showing that 4-HC increased in AKT phosphorylation and immunostaining showing increased phosphorylated FOXO3A staining of non-growing oocytes. Treatment with rapamycin reduced the activation of PI3K signalling in experiments with low doses of 4-HC while culture with AMH reduced PI3K activation (both AKT phosphorylation and phosphorylated FOXO3A staining intensity) across both doses investigated. LIMITATIONS, REASONS FOR CAUTION: These in vitro studies may not replicate in vivo exposures. Furthermore, longer experiment durations are needed to determine whether the effects observed translate into irreparable deficits of ovarian follicles. WIDER IMPLICATIONS OF THE FINDINGS: These data provide a solid foundation on which to explore the efficacy of AMH in protecting non-growing ovarian follicles from gonadotoxic chemotherapies. Future work will require consideration of the sustained effects of chemotherapy treatment and potential protectants to ensure these agents do not impair the developmental competence of oocytes or lead to the survival of oocytes with accumulated DNA damage, which could have adverse consequences for potential offspring. STUDY FUNDING/COMPETING INTEREST(S): This work was supported by grants from TENOVUS Scotland, the Academy of Medical Sciences (to R.R.), the Medical Research Council (G1100357 to R.A.A., MR/N022556/1 to the MRC Centre for Reproductive Health), and Merck Serono UK (to R.A.A.). R.R., H.L.S., N.S., and E.E.T. declare no conflicts of interest. R.A.A. reports grants and personal fees from Roche Diagnostics and Ferring Pharmaceuticals, and personal fees from IBSA and Merck outside the submitted work. TRIAL REGISTRATION NUMBER: N/A.


Assuntos
Hormônio Antimülleriano , Ovário , Humanos , Feminino , Gravidez , Ovário/patologia , Hormônio Antimülleriano/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Sirolimo/farmacologia , Sirolimo/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Cesárea , Ciclofosfamida/efeitos adversos
9.
Cells ; 12(23)2023 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-38067144

RESUMO

The transforming growth factor ß (TGFß) superfamily, consisting of protein ligands, receptors, and intracellular SMAD transducers, regulates fundamental biological processes and cancer development. Our previous study has shown that sustained activation of TGFß receptor 1 (TGFBR1) driven by anti-Mullerian hormone receptor type 2 (Amhr2)-Cre in the mouse testis induces the formation of testicular granulosa cell tumors (TGCTs). As Amhr2-Cre is expressed in both Sertoli cells and Leydig cells, it remains unclear whether the activation of TGFBR1 in Sertoli cells alone is sufficient to induce TGCT formation. Therefore, the objective of this study was to determine whether Sertoli cell-activation of TGFBR1 drives oncogenesis in the testis. Our hypothesis was that overactivation of TGFBR1 in Sertoli cells would promote their transdifferentiation into granulosa-like cells and the formation of TGCTs. To test this hypothesis, we generated mice harboring constitutive activation of TGFBR1 in Sertoli cells using anti-Mullerian hormone (Amh)-Cre. Disorganized seminiferous tubules and tumor nodules were found in TGFBR1CA; Amh-Cre mice. A histological analysis showed that Sertoli cell-specific activation of TGFBR1 led to the development of neoplasms resembling granulosa cell tumors, which derailed spermatogenesis. Moreover, TGCTs expressed granulosa cell markers including FOXL2, FOXO1, and INHA. Using a dual fluorescence reporter line, the membrane-targeted tdTomato (mT)/membrane-targeted EGFP (mG) mouse, we provided evidence that Sertoli cells transdifferentiated toward a granulosa cell fate during tumorigenesis. Thus, our findings indicate that Sertoli cell-specific activation of TGFBR1 leads to the formation of TGCTs, supporting a key contribution of Sertoli cell reprogramming to the development of this testicular malignancy in our model.


Assuntos
Tumor de Células da Granulosa , Neoplasias Ovarianas , Neoplasias Testiculares , Masculino , Humanos , Feminino , Camundongos , Animais , Células de Sertoli/metabolismo , Tumor de Células da Granulosa/metabolismo , Tumor de Células da Granulosa/patologia , Receptor do Fator de Crescimento Transformador beta Tipo I/metabolismo , Neoplasias Testiculares/metabolismo , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Hormônio Antimülleriano/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Neoplasias Ovarianas/patologia
10.
Environ Sci Pollut Res Int ; 30(47): 104805-104813, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37707728

RESUMO

In this study, it was aimed to investigate the effects of melamine exposure since the weaning period on ovarian tissue and ovarian reserve. Melamine is illegally added to milk and formula to provide high false protein positivity. Female rats (the weaning period = 21 days old, n = 18) were divided into 3 groups. 0.1 mL saline was applied to the control group by gavage for 21 days. Fifty mg/kg and seventy-five mg/kg melamine was dissolved in 0.1 mL of saline and applied by gavage for 21 days, respectively. At the end of the experiment, plasma anti-Mullerian hormone (AMH) was measured, follicle count and ovarian diameter measurement were performed in the right ovaries, and flow cytometric analysis for apoptosis was performed in the left ovaries. While a statistically significant decrease was not observed in the number of the follicle and ovarian diameter between the control and melamine-treated groups (p > 0.05), a significant decrease in the corpus luteum and a significant increase in the number of atretic follicles were observed (p < 0.05). Apoptosis (Annexin V) increased in both melamine groups and AMH plasma level decreased significantly in the 75 mg/kg group (p < 0.05). Melamine exposure from the weaning (early postnatal) period may cause a decrease in ovarian reserve in parallel with a dose increase.


Assuntos
Reserva Ovariana , Ratos , Feminino , Animais , Desmame , Folículo Ovariano , Ovário , Hormônio Antimülleriano/metabolismo , Hormônio Antimülleriano/farmacologia
11.
Biol Reprod ; 109(6): 994-1008, 2023 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-37724935

RESUMO

Significant events that determine oocyte competence occur during follicular growth and oocyte maturation. The anti-Mullerian hormone, a positive predictor of fertility, has been shown to be affected by exposure to endocrine disrupting compounds, such as bisphenol A and S. However, the interaction between bisphenols and SMAD proteins, mediators of the anti-Mullerian hormone pathway, has not yet been elucidated. AMH receptor (AMHRII) and downstream SMAD expression was investigated in bovine granulosa cells treated with bisphenol A, bisphenol S, and then competitively with the anti-Mullerian hormone. Here, we show that 24-h bisphenol A exposure in granulosa cells significantly increased SMAD1, SMAD4, and SMAD5 mRNA expression. No significant changes were observed in AMHRII or SMADs protein expression after 24-h treatment. Following 12-h treatments with bisphenol A (alone or with the anti-Mullerian hormone), a significant increase in SMAD1 and SMAD4 mRNA expression was observed, while a significant decrease in SMAD1 and phosphorylated SMAD1 was detected at the protein level. To establish a functional link between bisphenols and the anti-Mullerian hormone signaling pathway, antisense oligonucleotides were utilized to suppress AMHRII expression with or without bisphenol exposure. Initially, transfection conditions were optimized and validated with a 70% knockdown achieved. Our findings show that bisphenol S exerts its effects independently of the anti-Mullerian hormone receptor, while bisphenol A may act directly through the anti-Mullerian hormone signaling pathway providing a potential mechanism by which bisphenols may exert their actions to disrupt follicular development and decrease oocyte competence.


Assuntos
Hormônio Antimülleriano , Hormônios Peptídicos , Feminino , Animais , Bovinos , Hormônio Antimülleriano/genética , Hormônio Antimülleriano/metabolismo , Células da Granulosa/metabolismo , Transdução de Sinais , Hormônios Peptídicos/metabolismo , RNA Mensageiro/metabolismo
12.
Rev Assoc Med Bras (1992) ; 69(8): e20230381, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37585996

RESUMO

OBJECTIVE: Folliculogenesis is a complex process involving various ovarian paracrine factors. During folliculogenesis, vitamin D3 and progesterone are significant for the proper development of follicles. This study aimed to investigate the effects of vitamin D3 and selective progesterone receptor modulator ulipristal acetate on ovarian paracrine factors. METHODS: In the study, 18 female Wistar-albino rats were randomly divided into three groups: control group (saline administration, n=6), vitamin D3 group (300 ng/day vitamin D3 oral administration, n=6), and UPA group (3 mg/kg/day ulipristal acetate oral administration, n=6). Ovarian tissue was analyzed by histochemistry and immunohistochemistry. For quantification of immunohistochemistry, the mean intensities of growth differentiation factor 9, bone morphogenetic protein 15, and forkhead box O3a expressions were measured by Image J and MATLAB. Blood samples were collected for the analysis of serum anti-Müllerian hormone levels by ELISA. RESULTS: Atretic follicles and hemorrhagic cystic structures were observed in the UPA group. After immunohistochemistry via folliculogenesis assessment markers, growth differentiation factor 9, bone morphogenetic protein 15, and cytoplasmic forkhead box O3a expressions decreased in the UPA group (p<0.05). Anti-Müllerian hormone level did not differ significantly between the experimental groups (p>0.05). CONCLUSION: Ulipristal acetate negatively affects folliculogenesis via ovarian paracrine factors. The recommended dietary vitamin D3 supplementation in healthy cases did not cause a significant change.


Assuntos
Hormônio Antimülleriano , Proteína Morfogenética Óssea 15 , Proteína Forkhead Box O3 , Fator 9 de Diferenciação de Crescimento , Ovário , Animais , Feminino , Ratos , Hormônio Antimülleriano/metabolismo , Proteína Morfogenética Óssea 15/metabolismo , Colecalciferol/farmacologia , Fator 9 de Diferenciação de Crescimento/metabolismo , Ratos Wistar , Proteína Forkhead Box O3/metabolismo
13.
Mol Cell Endocrinol ; 577: 112011, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37453692

RESUMO

The Anti-mullerian hormone (AMH), also known as Mullerian inhibiting substance (MIS), is a glycoprotein that belongs to transforming growth factor ß superfamily. The significance of AMH during gonadal differentiation is not clearly deciphered in reptiles. Hence, current study aims to know the onset of AMH secretion and its functional role in Mullerian duct regression gonadal differentiation in tropical lizard, Calotes versicolor which exhibits a novel Female-Male-Female-Male (FMFM) pattern of temperature-dependent sex determination (TSD). The Immunohistochemistry and qRT-PCR techniques were employed to analyze the gonadal expression profile of AMH during different stages of embryonic development. The eggs of the lizard were incubated at both male-producing temperature (MPT: 25.5 ± 0.5 °C) and female-producing temperatures (FPT: 31.5 ± 0.5 °C). The results reveal that the onset of AMH gene expression was observed as early as oviposition prior to the immunolocalization of AMH protein at early-TSP (Temperature-sensitive period). The substantial rise in the intensity of the immunoreaction of AMH protein in the cytoplasm confining to Sertoli cells of seminiferous cords at MPT with low level of expression at FPT during gonadal sex differentiation, specify sexually dimorphic expression of AMH protein. Further, with the onset of sexual differentiation, the developing testis immensely expresses AMH gene which is 7-fold greater than that of transcripts levels in female embryos; signifies its conserved role in Mullerian duct regression thereby promoting testis differentiation. The robust immunnoexpression of AMH protein during post-gonadal differentiation coincides with the onset of the regression of Mullerian duct point out a positive correlation between testis differentiation and Mullerian duct regression, thus facilitating testis differentiation pathway. Based on the immunoexpression pattern of AMH protein and transcript levels of AMH gene, it is inferred that AMH plays a significant role in Mullerian duct regression, favoring testis differentiation.


Assuntos
Lagartos , Hormônios Peptídicos , Animais , Masculino , Feminino , Testículo/metabolismo , Hormônio Antimülleriano/genética , Hormônio Antimülleriano/metabolismo , Lagartos/metabolismo , Diferenciação Sexual/genética , Diferenciação Celular , Fator de Crescimento Transformador beta/metabolismo , Hormônios Peptídicos/metabolismo
14.
Endocr Relat Cancer ; 30(10)2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37410375

RESUMO

Anti-Müllerian hormone (AMH) is produced and secreted by granulosa cells of growing follicles, and its main role is to inhibit the recruitment of primordial follicles, reduce the sensitivity of follicles to follicle-stimulating hormone (FSH), and regulate FSH-dependent preantral follicle growth. It has become an effective indicator of ovarian reserve in clinical practice. Research on AMH and its receptors in recent years has led to a better understanding of its role in breast cancer. AMH specifically binds to anti-Müllerian hormone receptor II (AMHRII) to activate downstream pathways and regulate gene transcription. Since AMHRII is expressed in breast cancer cells and triggers apoptosis, AMH/AMHRII may play an important role in the occurrence, treatment, and prognosis of breast cancer, which needs further research. The AMH level is a potent predictor of ovarian function after chemotherapy in premenopausal breast cancer patients older than 35 years, either for ovarian function injury or ovarian function recovery. Moreover, AMHRII has the potential to be a new marker for the molecular typing of breast cancer and a new target for breast cancer treatment, which may be a link in the downstream pathway after TP53 mutation.


Assuntos
Hormônio Antimülleriano , Neoplasias da Mama , Feminino , Humanos , Hormônio Antimülleriano/genética , Hormônio Antimülleriano/metabolismo , Neoplasias da Mama/metabolismo , Folículo Ovariano/metabolismo , Células da Granulosa/metabolismo , Hormônio Foliculoestimulante/genética , Hormônio Foliculoestimulante/metabolismo , Hormônio Foliculoestimulante/farmacologia
15.
Clin Chim Acta ; 547: 117440, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37311505

RESUMO

BACKGROUND AND AIMS: The etiology of polycystic ovary syndrome (PCOS) is unclear. This study aimed to evaluate the role of classic and 11-oxygenated (11oxyC19) androgens in two typical signs of PCOS, polycystic ovary morphology (PCOM) and menstrual cycle prolongation. MATERIALS AND METHODS: A total of 462 infertile women with diagnosed PCOS and/or commonly accompanied metabolic disorders were recruited. Classic and 11oxyC19 androgens were determined with a sensitive high-performance liquid chromatography-differential mobility spectrometry tandem mass spectrometry apparatus. Least absolute shrinkage and selection operator logistic regression with fivefold cross-validation was applied to construct prediction models. RESULTS: For PCOM, the most significant contributing androgen was testosterone (T), with the weight of 51.6%. The AUC of the prediction model was 0.824 in validation set. For menstrual cycle prolongation, androstenedione (A4) was the most significant contributing androgen with weights of 77.5%. The AUC the prediction model was less than 0.75. When including other variables, the most significant variable turned to be AMH both in PCOM and in menstrual cycle prolongation. CONCLUSION: Androgens had more contribution in PCOM than in menstrual cycle prolongation. The classic androgen T or A4 contributed more than 11oxyC19 androgens. However, their contributions were diminished when other factors were considered, especially AMH.


Assuntos
Infertilidade Feminina , Síndrome do Ovário Policístico , Feminino , Humanos , Síndrome do Ovário Policístico/metabolismo , Androgênios , Hormônio Antimülleriano/metabolismo , Ciclo Menstrual
16.
Hum Reprod ; 38(6): 1086-1098, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37015102

RESUMO

STUDY QUESTION: To what extent and how does combined administration of the follicle activation pathway suppressive agents temsirolimus (Tem) and c-terminus recombinant anti-Müllerian hormone (rAMH) protect against chemotherapy-induced ovarian reserve loss? SUMMARY ANSWER: Combined administration of Tem and rAMH completely prevents cyclophosphamide (Cy)-induced follicle depletion and protects the ovarian reserve in mice, primarily via primordial follicle (PMF) suppression of activation and to a lesser degree by reducing apoptosis. WHAT IS KNOWN ALREADY: There is conflicting evidence regarding the contributory roles of apoptosis and follicle activation in chemotherapy-induced PMF loss. Tem, a mammalian target of rapamycin (mTOR) inhibitor, reduces activity of the phosphoinositide 3-kinases-phosphatase and tensin homolog (PI3K-PTEN) pathway which provides intrinsic regulation of PMF activation. Anti-Müllerian hormone (AMH), secreted by early growing follicles, is an extrinsic regulator of PMF activation. STUDY DESIGN, SIZE, DURATION: Whole ovaries of 12-day-old mice were cultured ex vivo for 7 days in the presence of Cy ± rAMH or Tem. Eight-week-old mice were randomized into eight treatment groups: vehicle control/rAMH/Tem/Cy/Tem + rAMH/Cy + Tem/Cy + rAMH/Cy + Tem + rAMH. Twelve hours after treatment, ovaries were removed for DNA damage analysis, and 24 h after treatment either for analysis of PI3K pathway proteins or to be fixed and immunostained for analyses of proliferation and apoptosis. Three or 21 days following treatment, ovaries were fixed and sectioned for follicle counting. PARTICIPANTS/MATERIALS, SETTING, METHODS: Hematoxylin and eosin staining was used for differential follicle counts of primordial, primary, and secondary follicles in ex vivo (n = 16-18 ovaries per group) and in vivo ovaries (n = 8 mice per group). Histological analyses were carried out to measure proliferation by quantifying Ki-67-positive granulosa cells in primary follicles (n = 4 mice per group). DNA damage and apoptosis were measured by quantification of phosphorylated form of histone 2AX (γH2AX) and cleaved poly (ADP-ribose) polymerase (cPARP)-positive PMF oocytes, respectively (n = 8 mice per group). Protein extracts from whole ovaries were analyzed by western blotting. MAIN RESULTS AND THE ROLE OF CHANCE: In vivo experiments show that treatment with Cy alone caused significant loss of PMF reserve (32 ± 2.12 versus 144 ± 2.8 in control, P < 0.001), and this was significantly attenuated by treatment with either Tem (P < 0.001) or rAMH (P < 0.001). Combined cotreatment with Cy + Tem + rAMH provided complete protection of the PMF reserve, with no significant difference in numbers of PMF versus untreated animals. Similar results were demonstrated in the ex vivo experiments. Proliferation marker Ki-67 staining was significantly reduced in granulosa cells of primary follicles in the Cy + Tem + rAMH group compared with Cy alone group (after 24 h in vivo administration of Cy, 16% versus 65%, respectively; P < 0.001). Protein analysis demonstrated not significant increased phosphorylation of follicle activation proteins rpS6 and mTOR with in vivo administration of Cy alone (1.9 and 1.4 times the control ovaries, respectively), and this was reduced to below control levels in the Cy + Tem + rAMH group (P < 0.01). The Cy + Tem + rAMH combined cotreatment protected the follicle reservoir via inhibition of Cy-induced upregulation of the PI3K signaling pathway, together with replacement of AMH suppression of PMF activation with rAMH, implying a complementary effect of the two inhibitors. The DNA damage marker γH2AX was highly positive in PMF oocytes from Cy-treated ovaries 12 h after treatment, compared with controls (94% versus 59%, respectively, P < 0.001) and was significantly reduced to (69%) in Cy + Tem + rAMH cotreated ovaries (P < 0.001). However, only 22% of PMF oocytes of the Cy group showed apoptosis at 24 h, and this was significantly reduced (12%) in ovaries after treatment with Cy + Tem + rAMH (P < 0.01). This suggests that it is not possible to equate DNA damage with oocyte death, and also indicates that less than one-third of the total PMF loss can be attributed to apoptosis, implying that most of the PMF depletion results from PMF activation but that both mechanisms play a significant role. LARGE SCALE DATA: N/A. LIMITATIONS, REASONS FOR CAUTION: The experimental design was limited by the selection of one time point for analysis of PMF activation and apoptosis (i.e. 24 h after Cy administration), although DNA damage was measured at 12 h after Cy administration and any impact on short-term follicle dynamics at 3 days after treatment. Protein analysis was conducted on whole ovary lysates therefore the protein changes identified cannot be localized to specific cells within the ovary. However, this complementary assay showed that there was activation in the ovary through massive reduction in the phosphorylation of key proteins in the PI3K cascade (rpS6 and mTOR), which is consistent with the sequence of events after Cy administration. WIDER IMPLICATIONS OF THE FINDINGS: Understanding the complementary nature of different follicle activation pathways and the impact of their suppression in prevention of chemotherapy-induced ovotoxic damage, as well as their involvement in DNA damage inhibition, provides an interesting direction for future research, and the potential for noninvasive pharmacological fertility preservation. STUDY FUNDING/COMPETING INTEREST(S): This work was supported by a grant from the Morris Kahn Foundation. The authors declare no conflicts of interest.


Assuntos
Antineoplásicos , Reserva Ovariana , Feminino , Animais , Camundongos , Reserva Ovariana/fisiologia , Hormônio Antimülleriano/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Antígeno Ki-67 , Ciclofosfamida , Serina-Treonina Quinases TOR , Mamíferos/metabolismo
17.
Fertil Steril ; 120(2): 371-381, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37061159

RESUMO

OBJECTIVE: To study the impact of aneuploid granulosa and stromal cells on folliculogenesis of small ovarian follicles from patients with mosaic Turner syndrome (TS) using a murine xenograft model. DESIGN: Laboratory study. SETTING: University hospital. PATIENT(S): Ovarian cortical tissue was obtained by laparoscopic surgery from 18 patients with mosaic TS (aged 5-19 years) and 13 controls (aged 5-18 years). INTERVENTION(S): Part of each tissue fragment was used to karyotype ovarian cells in nongrafted tissue by fluorescence in situ hybridization. The remaining tissue was xenografted to severe combined immunodeficient mice for 5 months. Grafted tissue was analyzed for aneuploidy, and follicle density and morphology were determined. Expressions of proliferating cell nuclear antigen and anti-Müllerian hormone were investigated by immunohistochemistry. MAIN OUTCOME MEASURE(S): The impact of aneuploid granulosa and stromal cells on folliculogenesis. Fluorescence in situ hybridization of ovarian tissue before grafting was performed to determine the level of aneuploidy in stromal cells and oocytes and granulosa of small follicles. After xenografting, the level of aneuploidy of the newly formed layers of granulosa cells was again determined in secondary and antral follicles. RESULT(S): Follicle density in ovarian tissue from patients with TS was significantly lower than in controls before grafting. Fluorescence in situ hybridization analysis confirmed that 101 of 104 oocytes from nongrafted tissue of patients with TS showed normal X chromosome content, whereas granulosa and stromal cells were mainly 45,X. Fragments from 12 patients with TS contained follicles at all stages after xenografting, including secondary and antral follicles. Follicle density in patients with TS and controls decreased significantly after grafting. Moreover, a shift from high to low proportions of 45,X granulosa cells was observed during folliculogenesis. Expression of proliferating cell nuclear antigen in follicles from patients with TS increased significantly during grafting. Secretion of anti-Müllerian hormone was impaired before grafting in peripubertal/postpubertal girls with TS, but recovered after grafting. CONCLUSION(S): Our study showed that small follicles from patients with mosaic TS undergoes folliculogenesis, despite the presence of aneuploid granulosa and stromal cells. Ovarian tissue cryopreservation could therefore be a valid option to preserve fertility in young patients with mosaic TS if sufficient numbers of follicles are present, thus preferably before the age of 12.


Assuntos
Síndrome de Turner , Feminino , Humanos , Animais , Camundongos , Síndrome de Turner/genética , Antígeno Nuclear de Célula em Proliferação/genética , Xenoenxertos , Hormônio Antimülleriano/metabolismo , Hibridização in Situ Fluorescente , Aneuploidia
18.
Int J Mol Sci ; 24(6)2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36982948

RESUMO

Seasonal reproduction is a survival strategy by which animals adapt to environmental changes to improve their fitness. Males are often characterized by a significantly reduced testicular volume, indicating that they are in an immature state. Although many hormones, including gonadotropins, have played a role in testicular development and spermatogenesis, research on other hormones is insufficient. The anti-Müllerian hormone (AMH), which is a hormone responsible for inducing the regression of Müllerian ducts involved in male sex differentiation, was discovered in 1953. Disorders in AMH secretion are the main biomarkers of gonadal dysplasia, indicating that it may play a crucial role in reproduction regulation. A recent study has found that the AMH protein is expressed at a high level during the non-breeding period of seasonal reproduction in animals, implying that it may play a role in restricting breeding activities. In this review, we summarize the research progress on the AMH gene expression, regulatory factors of the gene's expression, and its role in reproductive regulation. Using males as an example, we combined testicular regression and the regulatory pathway of seasonal reproduction and attempted to identify the potential relationship between AMH and seasonal reproduction, to broaden the physiological function of AMH in reproductive suppression, and to provide new ideas for understanding the regulatory pathway of seasonal reproduction.


Assuntos
Hormônio Antimülleriano , Hormônios Peptídicos , Animais , Masculino , Hormônio Antimülleriano/genética , Hormônio Antimülleriano/metabolismo , Estações do Ano , Testículo/metabolismo , Gônadas/metabolismo , Hormônios Peptídicos/metabolismo , Reprodução
19.
Theriogenology ; 202: 84-92, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36933285

RESUMO

Granulosa cells (GCs) are the ovary's most critical cells since they undergo cell differentiation and hormone synthesis changes closely associated with follicle development. While micro RNA 140-3p (miRNA-140-3p) has an apparent cell signaling role, particularly in cell proliferation, its biological role in chicken ovarian follicle growth and development remains elusive. This study explored miR-140-3p's effects on chicken GC proliferation and steroid hormone synthesis. MiR-140-3p dramatically increased GC proliferation, prevented apoptosis, increased progesterone synthesis, and enhanced gene expression related to steroid hormone synthesis. In addition, the anti-Müllerian hormone (AMH) gene was identified as a direct miR-140-3p target. MiR-140-3p abundance correlated negatively with AMH mRNA and protein levels in GCs. Our findings show that miR-140-3p influences chicken GC proliferation and steroid hormone synthesis by suppressing AMH expression.


Assuntos
Galinhas , MicroRNAs , Feminino , Animais , Galinhas/genética , Galinhas/metabolismo , Folículo Ovariano/metabolismo , Células da Granulosa/metabolismo , Proliferação de Células , MicroRNAs/genética , MicroRNAs/metabolismo , Esteroides/metabolismo , Hormônios/metabolismo , Hormônio Antimülleriano/genética , Hormônio Antimülleriano/metabolismo
20.
J Assist Reprod Genet ; 40(5): 1117-1134, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36856968

RESUMO

PURPOSE: The foremost drawback of ovarian tissue cryopreservation and re-transplantation (OTCT) technique is the rapid loss of the primordial follicle (PF) pool. In recent studies, we have demonstrated that post-transplantation burnout of the PFs occurs due to the altered expression of the activatory and inhibitory proteins that control PF reserve, and rapamycin prevented it. METHODS: Here, we investigated whether anti-Mullerian hormone administration in the bilateral oophorectomy and transplantation group and internal AMH in the unilateral oophorectomy and transplantation group protect follicle reserve by regulating the expression of the molecules that control follicle growth after OTCT in mice. RESULTS: After 14 days of OTCT, PF reserve is significantly reduced in both unilateral oophorectomy and transplantation and bilateral oophorectomy and transplantation groups, while anti-Mullerian hormone treatment attenuates PF loss after bilateral oophorectomy and transplantation. The expression of KitL, Bmp-15, and p27 decreased after unilateral oophorectomy and transplantation and bilateral oophorectomy and transplantation, yet recombinant anti-Mullerian hormone treatment did not restore the expression of these proteins in the BLO-T group. CONCLUSION: Exogenous recombinant anti-Mullerian hormone administration in the BLO-T group preserved the expressions of Tsc1 and Gdf-9 in PF and p-s6k and Gdf-9 in growing follicles after OTCT. Nonetheless, recombinant anti-Mullerian hormone administration did not affect granulosa cell proliferation and death rates in the growing follicles. These findings suggest a novel hormonal replacement strategy for fertility preservation by restoring anti-Mullerian hormone to regulate Tsc1 and p-s6k, thereby linking this hormone with the mTOR pathway and Gdf-9 signaling.


Assuntos
Hormônio Antimülleriano , Fator 9 de Diferenciação de Crescimento , Feminino , Camundongos , Animais , Hormônio Antimülleriano/metabolismo , Fator 9 de Diferenciação de Crescimento/genética , Fator 9 de Diferenciação de Crescimento/metabolismo , Folículo Ovariano , Ovário/metabolismo , Criopreservação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...